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Abstract. Edelsbrunner and Shah have proven that incremental topological flipping works for

constructing a regular triangulation for a finite set of weighted points in d−dimensional space. This

paper describes the lexicographical manipulations employed in a recently completed implementation

of their method for correctly computing 3-dimensional regular triangulations. At the start of the

execution of this implementation a regular triangulation for the vertices of an artificial cube that

contains the points is constructed. Throughout the execution the vertices of this cube are treated

in the proper lexicographical manner so that the final triangulation is correct.
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1. Introduction

Given integer k, 0 ≤ k ≤ d, and a set R of k + 1 affinely independent points in d−dimensional
space (Rd), we say that the convex hull of R, denoted by ∆R, is the k−simplex for R. Let
S be a finite set of points in Rd. By a triangulation T for S we mean a finite collection of
k−simplices for subsets of S, k = 0, . . . , d, that satisfies the following three conditions.

1. If ∆R is in T then ∆U is in T for all U , U ⊆ R.

2. If ∆R, ∆U are in T then ∆R ∩ ∆U = ∆R∩U .
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3. The union of the simplices in T equals the convex hull of S.

Given a triangulation T for S, we say that T is a Delaunay triangulation for S if S is the
set of 0−simplices in T , and for each d−simplex in T there does not exist a point of S in
the interior of the circumsphere of the simplex [2].

A larger class of triangulations that includes the Delaunay triangulations can be defined.
Again, let S be a finite set of points in Rd, and for each point p in S let wp be a real-valued
weight assigned to p. Given p in S and a point x in Rd, the power distance of x from p,
denoted by πp(x), is defined by

πp(x) ≡ |xp|2 − wp,

where |xp| is the Euclidean distance between x and p. Given a set R of d + 1 affinely
independent points in S, a point, denoted by z(∆R), exists in Rd with the same power
distance, denoted by w(∆R), from all d + 1 points in R. z(∆R) is called the orthogonal

center of ∆R. Accordingly, the points in S are said to be in general position (in Rd) if every
set of d + 1 points in S is affinely independent, and for every d + 2 points in S there is no
point in Rd with the same power distance from all d + 2 points. Given a triangulation T
for S, the points in S not necessarily in general position, we then say that T is a regular

triangulation for S if for each d−simplex t in T and each point p in S, πp(z(t)) ≥ w(t). We
observe that T is unique if the points in S are in general position.

Given points p, q in S, we denote by Hp,q the half-space of points x in Rd for which
πp(x) ≤ πq(x), and for each p in S, the power cell for p, denoted by P (p), is defined by

P (p) ≡ ∩q∈S\{p}Hp,q.

The collection of power cells P (p), p in S, is called the power diagram of S [1], and if
the points in S are in general position in Rd then it is the dual of the (unique) regular
triangulation for S. Indeed the orthogonal center of a d−simplex in a regular triangulation
for S is a vertex of the power diagram of S. We observe that if the weights of the points in
S are all equal then the power diagram of S is identical to the Voronoi diagram of S [7], and
the regular and Delaunay triangulations for S coincide. In addition, we notice that a point
p in S whose power cell is empty cannot be a vertex of any regular triangulation for S. In
this case p is said to be redundant. However, if p is a vertex of the convex hull of S then
its power cell is nonempty so that it must be a vertex of any regular triangulation for S.
This makes sense since the union of the simplices in any triangulation for S must equal the
convex hull of S.

Let T be a triangulation for a set S of n points in Rd, not necessarily in general position.
Given a d−simplex t in T we denote by N(t) the set of points in S \ t that are vertices of
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d−simplices in T sharing a (d−1)−simplex with t. We then say that t is locally regular if for
each point p in N(t), πp(z(t)) ≥ w(t). By extending results for Delaunay triangulations [5, 6],
Edelsbrunner and Shah [3] have proven that if the vertex set of T contains all non-redundant
points in S and every d−simplex in T is locally regular then T is a regular triangulation
for S. They then use this result to generalize to regular triangulations in Rd a result for
computing incrementally Delaunay triangulations in R2 [4]. Their algorithm is based on
an operation referred to as a flip that replaces a triangulation for d + 2 points with the
(unique) alternative triangulation for the d + 2 points [6]. Given a proper subset S ′ of S
and a regular triangulation T ′ for S ′, they show how a point p in S \ S ′ can be added to T ′

through a sequence of flips so that the resulting triangulation for S ′ ∪ {p} is regular. They
also generalize a two-dimensional technique for efficiently identifying the initial location of
the point to be added [4]. Finally, they prove that under the assumption of a random
insertion sequence the total expected running time of their algorithm is O(n logn + n⌈d/2⌉).

The algorithm by Edelsbrunner and Shah constructs a regular triangulation for a set S
by adding one point at a time into a regular triangulation for the set of previously added
points. This implies that before any points in S are added a regular triangulation must be
first constructed with vertices at infinity and underlying space equal to Rd. The vertices of
this initial triangulation are said to be artificial. Throughout the execution of the algorithm
artificial points must be treated in the proper lexicographical manner so that the final tri-
angulation does contain a triangulation for S, and this triangulation for S is indeed regular.
This is not exactly a trivial undertaking.

In this paper we describe the lexicographical manipulations that are employed in a re-
cently completed implementation of the algorithm by Edelsbrunner and Shah for correctly
computing a regular triangulation for an arbitrary set S in R3. At the start of the execu-
tion of the implementation an artificial 3−dimensional cube that contains S in its interior
is constructed, and a regular triangulation for the set of vertices of the cube (weights set to
the same number) is computed. The execution then proceeds with the incremental inser-
tion of points in S as suggested by Edelsbrunner and Shah. However, at all times, because
of the lexicographical manipulations employed in the presence of artificial points, the arti-
ficial points (the eight vertices of the cube) are assumed to be as close to infinity as the
manipulations require.

The lexicographical manipulations are divided in two groups. The first group, discussed
in Section 3, consists of manipulations for determining the location of a point with respect
to a facet of a tetrahedron. The second group, discussed in Section 4, consists of manipu-
lations for determining whether a triangulation for five points is regular or else should be
transformed through a flip into the (unique) regular alternative triangulation for the five
points. Terminology used throughout the paper is presented in Section 2.
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2. Terminology

In this section we introduce terminology that is employed in the sections that follow.

Let S be a finite set of points in R3, and assign a real valued weight wp to each point p in S.
Real numbers xmin, xmax, ymin, ymax, zmin, zmax are defined by

xmin ≡ min{x : ∃ y, z, (x, y, z) ∈ S}.

xmax ≡ max{x : ∃ y, z, (x, y, z) ∈ S}.

ymin ≡ min{y : ∃ x, z, (x, y, z) ∈ S}.

ymax ≡ max{y : ∃ x, z, (x, y, z) ∈ S}.

zmin ≡ min{z : ∃ x, y, (x, y, z) ∈ S}.

zmax ≡ max{z : ∃ x, y, (x, y, z) ∈ S}.

A real number wmin is defined by

wmin ≡ min{wp : p ∈ S}.

Real numbers xctr, yctr,zctr are defined by

xctr ≡ (xmax + xmin)/2.

yctr ≡ (ymax + ymin)/2.

zctr ≡ (zmax + zmin)/2.

A point p in R3 is defined by
p̄ ≡ (xctr, yctr, zctr).

Vectors ei, i = 1, . . . , 8, are defined by

e1 ≡ (−1,−1, 1).

e2 ≡ (−1, 1, 1).
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e3 ≡ ( 1, 1, 1).

e4 ≡ ( 1,−1, 1).

e5 ≡ (−1,−1,−1).

e6 ≡ (−1, 1,−1).

e7 ≡ ( 1, 1,−1).

e8 ≡ ( 1,−1,−1).

For each real number µ, µ > 0, the vertices piµ, i = 1, . . . , 8, of a cube Rµ are defined by

piµ ≡ p̄ + µei, i = 1, . . . , 8.

For arbitrarily large µ, µ > 0, Rµ contains S in its interior. Given a real number µ, µ > 0,
the points piµ, i = 1, . . . , 8, are the artificial points, and µ is assumed to be as large as
the lexicographical manipulations require. In order to be consistent, given a real number µ,
µ > 0, a real number w, w < wmin, is selected and assigned as a weight to each of the points
piµ, i = 1, . . . , 8. Since the points piµ, i = 1, . . . , 8, are the vertices of a cube, it follows easily
that any triangulation for these points is regular. In addition, one such triangulation is not
hard to compute.

Finally, given a set R of 4 affinely independent weighted points in R3, denote by z(∆R) the
orthogonal center of ∆R and by w(∆R) the power distance of z(∆R) from any of the points
in R.

3. Lexicographical manipulations for point location determination

For arbitrarily large µ, µ > 0, let S ′ be a proper subset of S, and let T ′
µ be a regular

triangulation for S ′
µ ≡ S ′ ∪ {piµ, i = 1, . . . , 8} that contains a regular triangulation T ′ for S ′.

Let p be a point in S \ S ′, and let t be a tetrahedron in T ′
µ. Denote the vertices of t by q1,

q2, q3, q4. Given that p is not a vertex of t, let T1 and T2 be the two possible triangulations
for {q1, q2, q3, q4, p} [6] and assume t is in T1. In this section we describe lexicographical
manipulations that may be used in the presence of artificial points for identifying T1 and T2.
For the sake of completeness we also present direct computations that may be used when no
artificial points are involved.
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For each j, j = 1, . . . , 4, denote by fj the facet of t that does not contain qj, and by Hj

the plane in R3 that contains fj . For each j, j = 1, . . . , 4, denote by H+
j the open half-space

in R3 determined by Hj that contains qj , and by H−
j the open half-space in R3 determined

by Hj that does not contain qj . For each j, j = 1, . . . , 4, determining which of Hj , H+
j ,

H−
j contains p can be accomplished through either lexicographical manipulations or direct

computations as described below. Indeed it is by ascertaining which of Hj, H+
j , H−

j contains
p for each j, j = 1, . . . , 4, that one can identify the triangulations T1 and T2. Accordingly,
the following nine configurations of T1 and T2 are possible, each configuration depending on
which of Hj, H+

j , H−
j contains p for each j, j = 1, . . . , 4.

Configuration 1 (possible ‘1 to 4’ flip): p is in ∩4
j=1H

+
j . Denote by t1, t2, t3, and t4 the

tetrahedra whose vertex sets are {q1, q2, q3, p}, {q1, q2, q4, p}, {q1, q3, q4, p}, and {q2, q3, q4, p},
respectively. It then follows that T1 consists exactly of t, and T2 of t1, t2, t3, and t4.

Configuration 2 (possible ‘1 to 3’ flip): For distinct integers j1, j2, j3, j4, 1 ≤ j1, j2, j3, j4 ≤ 4,
p is in Hj1 ∩ H+

j2 ∩ H+
j3 ∩ H+

j4. Denote by t1, t2, and t3 the tetrahedra whose vertex sets are
{qj1 , qj2, qj3, p}, {qj1 , qj2, qj4, p}, and {qj1, qj3, qj4, p}, respectively. It then follows that T1

consists exactly of t, and T2 of t1, t2, and t3.

Configuration 3 (possible ‘1 to 2’ flip): For distinct integers j1, j2, j3, j4, 1 ≤ j1, j2, j3, j4 ≤ 4,
p is in Hj1 ∩ Hj2 ∩ H+

j3 ∩ H+
j4. Denote by t1 and t2 the tetrahedra whose vertex sets are

{qj1 , qj2, qj3, p} and {qj1, qj2, qj4 , p}, respectively. It then follows that T1 consists exactly of t,
and T2 of t1 and t2.

Configuration 4 (possible ‘2 to 3’ flip): For distinct integers j1, j2, j3, j4, 1 ≤ j1, j2, j3, j4 ≤ 4,
p is in H−

j1 ∩ H+
j2 ∩ H+

j3 ∩ H+
j4. Denote by t1, t2, t3, and t′ the tetrahedra whose vertex sets

are {qj1, qj2, qj3 , p}, {qj1 , qj2, qj4, p}, {qj1 , qj3, qj4, p}, and {qj2 , qj3, qj4, p}, respectively. It then
follows that T1 consists of t and t′, and T2 of t1, t2, and t3.

Configuration 5 (possible ‘3 to 2’ flip): For distinct integers j1, j2, j3, j4, 1 ≤ j1, j2, j3, j4 ≤ 4,
p is in H−

j1 ∩ H−
j2 ∩ H+

j3 ∩ H+
j4. Denote by t1, t2, t′, and t′′ the tetrahedra whose vertex sets are

{qj1 , qj2, qj3, p}, {qj1 , qj2, qj4, p}, {qj2, qj3 , qj4, p}, {qj1, qj3, qj4 , p}, respectively. It then follows
that T1 consists of t, t′, and t′′, and T2 of t1 and t2.

Configuration 6 (possible ‘2 to 2’ flip): For distinct integers j1, j2, j3, j4, 1 ≤ j1, j2, j3, j4 ≤ 4,
p is in H−

j1 ∩ Hj2 ∩ H+
j3 ∩ H+

j4. Denote by t1, t2, and t′ the tetrahedra whose vertex sets are
{qj1 , qj2, qj3, p}, {qj1 , qj2, qj4, p}, and {qj2, qj3, qj4, p}, respectively. It then follows that T1

consists of t and t′, and T2 of t1 and t2.

Configuration 7 (possible ‘4 to 1’ flip): For distinct integers j1, j2, j3, j4, 1 ≤ j1, j2, j3, j4 ≤ 4,
p is in H−

j1 ∩ H−
j2 ∩ H−

j3 ∩ H+
j4. Denote by t1, t′, t′′, and t′′′ the tetrahedra whose vertex sets

are {qj1, qj2, qj3 , p}, {qj2 , qj3, qj4, p}, {qj1 , qj3, qj4, p}, and {qj1 , qj2, qj4, p}, respectively. It then
follows that T1 consists of t, t′, t′′, and t′′′, and T2 exactly of t1.
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Configuration 8 (possible ‘3 to 1’ flip): For distinct integers j1, j2, j3, j4, 1 ≤ j1, j2, j3, j4 ≤ 4,
p is in H−

j1 ∩ H−
j2 ∩ Hj3 ∩ H+

j4. Denote by t1, t′, and t′′ the tetrahedra whose vertex sets are
{qj1 , qj2, qj3, p}, {qj2 , qj3, qj4, p}, and {qj1, qj3, qj4, p}, respectively. It then follows that T1

consists of t, t′, and t′′, and T2 exactly of t1.

Configuration 9 (possible ‘2 to 1’ flip): For distinct integers j1, j2, j3, j4, 1 ≤ j1, j2, j3, j4 ≤ 4,
p is in H−

j1 ∩ Hj2 ∩ Hj3 ∩ H+
j4. Denote by t1 and t′ the tetrahedra whose vertex sets are

{qj1 , qj2, qj3, p}, and {qj2, qj3, qj4 , p}, respectively. It then follows that T1 consists of t and t′,
and T2 exactly of t1.

Finally, in what follows, for the purpose of identifying T1 and T2 we present lexicographical
manipulations and direct computations that may be used for determining which of Hj, H+

j ,
H−

j contains p for a given j, 1 ≤ j ≤ 4. We do this by cases, each case depending on the
number of artificial vertices of fj. Here and in the next section we assume without any loss
of generality that S ′ is not empty. It then follows that if the vertices of a facet of a triangle
in T ′

µ are all artificial then the facet must be contained in its entirety in the boundary of Rµ.
We proceed without any loss of generality for the case j equal to 4. We define a vector v
by v ≡ (q1 − q3) × (q2 − q3), i. e. the cross product of vectors (q1 − q3) and (q2 − q3), and
assume that q1, q2, q3 are ordered in such a way that v · (q4 − q3), i. e. the inner product of
v and (q4 − q3), is positive. Clearly, which of H4, H+

4 , H−
4 contains p depends on the sign

of v · (p − q3). The solution by cases to the point location determination problem, i. e. the
problem of determining the sign of v · (p − q3), follows.

Case 1: None of q1, q2, q3 is artificial. Since none of the vertices of f4 is artificial the sign of
v · (p − q3) can then be determined through direct computations of v, p−q3, and v · (p − q3).

Case 2: Exactly one of q1, q2, q3 is artificial. Without any loss of generality we asssume the
one point is q1 so that q2 and q3 are in S. Let k be an integer, 1 ≤ k ≤ 8, so that q1 equals
pkµ. Accordingly, by definition the vector v must then equal (p̄ + µek − q3) × (q2 − q3) which
in turn reduces to

((p̄ − q3) × (q2 − q3)) + µ(ek × (q2 − q3)).

Define numbers d0, d1, as follows:

d0 ≡ ((p̄ − q3) × (q2 − q3)) · (p − q3).

d1 ≡ (ek × (q2 − q3)) · (p − q3).
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The sign of v · (p − q3) can then be determined as follows:
If d1 is non-zero then the sign is that of d1.
Else, if d1 is zero then it is that of d0.

Case 3: Exactly two of q1, q2, q3 are artificial. Without any loss of generality we asssume
the two points are q1 and q2 so that q3 is in S. Let k and l be integers, 1 ≤ k, l ≤ 8, so
that q1 equals pkµ and q2 equals plµ. Accordingly, by definition the vector v must then equal
(p̄ + µek − q3) × (p̄ + µel − q3) which in turn reduces to

µ((p̄ − q3) × (el − ek)) + µ2(ek × el).

Define numbers d1, d2, as follows:

d1 ≡ ((p̄ − q3) × (el − ek)) · (p − q3).

d2 ≡ (ek × el) · (p − q3).

The sign of v · (p − q3) can then be determined as follows:
If d2 is non-zero then the sign is that of d2.
Else, if d2 is zero then it is that of d1.

Case 4: q1, q2, q3 are all artificial. Since the vertices of f4 are all artificial it then follows
that f4 must be contained in its entirety in the boundary of Rµ. Since Rµ contains S in its
interior and v · (q4 − q3) is positive it must then be that v · (p − q3) is also positive.

4. Lexicographical manipulations for flipping determination

Again, for arbitrarily large µ, µ > 0, let S ′ be a proper subset of S, and let T ′
µ be a regular

triangulation for S ′
µ ≡ S ′ ∪ {piµ, i = 1, . . . , 8} that contains a regular triangulation T ′ for S ′.

Let p be a point in S \ S ′, and let t be a tetrahedron in T ′
µ. Denote the vertices of t by q1,

q2, q3, q4. Given that p is not a vertex of t, let T1 and T2 be the two possible triangulations
for {q1, q2, q3, q4, p} [6] and assume t is in T1. In this section we describe lexicographical
manipulations that may be used in the presence of artificial points for determining which
of T1 and T2 is regular. For the sake of completeness we also present direct computations
that may be used when no artificial points are involved. We do this by cases, each case
depending on the number of artificial vertices of t. First, however, we state and prove three
propositions that will be useful during the presentation of these cases.
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Proposition 1: Let t̂ be a tetrahedron with vertices in S ∪ {piµ, i = 1, . . . , 8}, µ arbitrarily
large. Denote the vertices of t̂ by q̂1, q̂2, q̂3, and q̂4, and assume q̂1 is artificial while q̂2, q̂3,
q̂4 are not. In addition, assume ((q̂2 − q̂4) × (q̂3 − q̂4)) · (q̂1 − q̂4) < 0. Let k be an integer,
1 ≤ k ≤ 8, so that q̂1 equals pkµ. Let f̂ be the facet of t̂ whose vertices are q̂2, q̂3, and q̂4,

and let Ĥ be the plane in R3 that contains f̂ . Denote by z̄ the orthogonal center of f̂ in the
plane Ĥ, and by w̄ the power distance of z̄ from any of the vertices of f̂ .
Given a point p̂ in S, define a number d by

d ≡ ((q̂2 − q̂4) × (q̂3 − q̂4)) · (p̂ − q̂4).

If d does not equal zero then the sign of πp̂(z(t̂)) − w(t̂) is that of d.
Else, if d equals zero then πp̂(z(t̂)) − w(t̂) equals πp̂(z̄) − w̄.

Proof: Define a vector v by v ≡ (q̂2 − q̂4) × (q̂3 − q̂4).
Clearly v is perpendicular to Ĥ and z(t̂) equals z̄ + βµv for some real number βµ. We then
show that given an arbitrary real number β̃ then for arbitrarily large µ it must be that
β̃ > βµ. To this end, denote by z([q̂1, q̂4]) the orthogonal center of the edge [q̂1, q̂4] in the

affine hull of q̂1 and q̂4. Since q̂4 is in Ĥ and by assumption v · (q̂1 − q̂4) < 0 it follows that
for each β, β < βµ, it must be that z̄ + βv is in the interior of Hq̂1,q̂4

(the half-space of points
x in R3 for which πq̂1

(x) ≤ πq̂4
(x)). For arbitrarily large µ the Euclidean distance between

q̂4 and z([q̂1, q̂4]) is itself arbitrarily large. In particular, it is larger than the Euclidean
distance between q̂4 and z̄ + β̃v. Thus, z̄ + β̃v can not be in Hq̂1,q̂4

and therefore it must be
that β̃ > βµ.
If d, i. e. v · (p̂ − q̂4), is not zero then for a unique real number β̃ it must be that πp̂(z̄ + β̃v)
equals πq̂4

(z̄ + β̃v). If d is positive it then follows that for each β, β < β̃, it must be that
z̄ + βv is in the interior of Hq̂4,p̂. Since βµ < β̃ for µ arbitrarily large, it then follows that
z(t̂), i. e. z̄ + βµv, is in the interior of Hq̂4,p̂. Therefore πp̂(z(t̂)) > πq̂4

(z(t̂)) = w(t̂) and
πp̂(z(t̂)) − w(t̂) is positive. If d is negative it then follows that for each β, β < β̃, it must be
that z̄ + βv is in the interior of Hp̂,q̂4

. Since βµ < β̃ for µ arbitrarily large, it then follows
that z(t̂), i. e. z̄ + βµv, is in the interior of Hp̂,q̂4

. Therefore πp̂(z(t̂)) < πq̂4
(z(t̂)) = w(t̂) and

πp̂(z(t̂)) − w(t̂) is negative.

If d is zero then p̂ is in Ĥ. We then have

πp̂(z(t̂)) − w(t̂) = πp̂(z(t̂)) − πq̂4
(z(t̂))

= (|z(t̂)p̂|2 − wp̂) − (|z(t̂)q̂4|
2 − wq̂4

)

= (|z(t̂)z̄|2 + |z̄p̂|2 − wp̂) − (|z(t̂)z̄|2 + |z̄q̂4|
2 − wq̂4

)

= (|z̄p̂|2 − wp̂) − (|z̄q̂4|
2 − wq̂4

)
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= πp̂(z̄) − πq̂4
(z̄)

= πp̂(z̄) − w̄.

This completes the proof of the proposition.

Proposition 2: Let t̂ be a tetrahedron with vertices in S ∪ {piµ, i = 1, . . . , 8}, µ arbitrarily
large. Denote the vertices of t̂ by q̂1, q̂2, q̂3, and q̂4, and assume q̂1, q̂2 are artificial while q̂3,
q̂4 are not. In addition, assume ((q̂2 − q̂1) × (q̂3 − q̂4)) · (q̂1 − q̂4) < 0. Let k, l be integers,
1 ≤ k, l ≤ 8, so that q̂1 equals pkµ and q̂2 equals plµ. Let H̃ be the plane in R3 that is the
chordale of q̂3 and q̂4, i. e. the plane of points x in R3 for which πq̂3

(x) = πq̂4
(x). Let H̄ be

the plane in R3 that is the chordale of pkµ and plµ for all positive values of µ (pkµ equals

p̄ + µek and plµ equals p̄ + µel), and let Ĥ be the plane in R3 that contains q̂3 and q̂4, and

is perpendicular to H̃ ∩ H̄. Denote by z̄ the point that is the intersection of H̃, H̄, and Ĥ,
and by w̄ the power distance of z̄ from either q̂3 or q̂4

Given a point p̂ in S, define a number d by

d ≡ ((el − ek) × (q̂3 − q̂4)) · (p̂ − q̂4).

If d does not equal zero then the sign of πp̂(z(t̂)) − w(t̂) is that of d.
Else, if d equals zero then πp̂(z(t̂)) − w(t̂) equals πp̂(z̄) − w̄.

Proof: Define a vector v by v ≡ (el − ek) × (q̂3 − q̂4).
The rest of the proof follows as in the proof of Proposition 1 above.

Proposition 3: Let t̂ be a tetrahedron with vertices in S ∪ {piµ, i = 1, . . . , 8}, µ arbitrarily
large. Denote the vertices of t̂ by q̂1, q̂2, q̂3, and q̂4, and assume q̂1, q̂2, q̂3 are artificial while
q̂4 is not. In addition, assume ((q̂2 − q̂1) × (q̂3 − q̂1)) · (q̂1 − q̂4) < 0. Let k, l, m be integers,
1 ≤ k, l, m ≤ 8, so that q̂1 equals pkµ, q̂2 equals plµ, and q̂3 equals pmµ. Let H̃ and H̄ be
the planes in R3 that are the chordales, respectively, of pkµ and plµ, and pkµ and pmµ, for

all positive values of µ. Let Ĥ be the plane in R3 that contains q̂4 and is perpendicular
to H̃ ∩ H̄ . Denote by z̄ the point that is the intersection of H̃ , H̄ , and Ĥ , and by w̄ the
power distance of z̄ from q̂4.
Given a point p̂ in S, define a number d by

d ≡ ((el − ek) × (em − ek)) · (p̂ − q̂4).

If d does not equal zero then the sign of πp̂(z(t̂)) − w(t̂) is that of d.
Else, if d equals zero then πp̂(z(t̂)) − w(t̂) equals πp̂(z̄) − w̄.
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Proof: Define a vector v by v ≡ (el − ek) × (em − ek).
The rest of the proof follows as in the proof of Proposition 1 above.

We now present the solution by cases to the flipping determination problem, i. e. the
problem of determining which of T1 and T2 is regular.

Case 1: None of q1, q2, q3, q4 is artificial. Compute z(t) and w(t). If πp(z(t)) ≥ w(t) then
T1 is regular. Else, T2 is regular.

Case 2: Exactly one of q1 q2, q3, q4 is artificial. Without any loss of generality assume q1 is
artificial, and let k be an integer, 1 ≤ k ≤ 8, so that q1 equals pkµ.
Assume ((q2 − q4) × (q3 − q4)) · (q1 − q4) < 0.
Compute d ≡ ((q2 − q4) × (q3 − q4)) · (p − q4), and apply Proposition 1 as follows:
If d > 0 then πp(z(t)) > w(t) so that T1 is regular.
Else, if d < 0 then πp(z(t)) < w(t) so that T2 is regular.
Finally, if d is zero then let f be the facet of t whose vertices are q2, q3, and q4, and let H
be the plane in R3 that contains f . Compute z̄, the orthogonal center of f in the plane H ,
and w̄, the power distance of z̄ from any of the vertices of f .
If πp(z̄) ≥ w̄ then πp(z(t)) ≥ w(t) so that T1 is regular.
Else, if πp(z̄) < w̄ then πp(z(t)) < w(t) so that T2 is regular.

Case 3: Exactly two of q1 q2, q3, q4 are artificial. Without any loss of generality assume
q1 and q2 are artificial, and let k, l be integers, 1 ≤ k, l ≤ 8, so that q1 equals pkµ and q2

equals plµ.
Assume ((q2 − q1) × (q3 − q4)) · (q1 − q4) < 0.
Compute d ≡ ((el − ek) × (q3 − q4)) · (p − q4), and apply Proposition 2 as follows:
If d > 0 then πp(z(t)) > w(t) so that T1 is regular.
Else, if d < 0 then πp(z(t)) < w(t) so that T2 is regular.
Finally, if d is zero then let H̃ be the plane in R3 that is the chordale of q3 and q4, let H̄
be the plane in R3 that is the chordale of pkµ and plµ for all positive values of µ, and let H
be the plane in R3 that contains q3 and q4, and is perpendicular to H̃ ∩ H̄. Compute z̄, the
point that is the intersection of H̃, H̄ , and H , and w̄, the power distance of z̄ from either q3

or q4

If πp(z̄) ≥ w̄ then πp(z(t)) ≥ w(t) so that T1 is regular.
Else, if πp(z̄) < w̄ then πp(z(t)) < w(t) so that T2 is regular.
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Case 4: Exactly three of q1, q2, q3, q4 are artificial. Without any loss of generality assume
q1, q2 and q3 are artificial, and let k, l, m be integers, 1 ≤ k, l, m ≤ 8, so that q1 equals pkµ,
q2 equals plµ, and q3 equals pmµ.
Assume ((q2 − q1) × (q3 − q1)) · (q1 − q4) < 0.
Compute d ≡ ((el − ek) × (em − ek)) · (p − q4), and apply Proposition 3 as follows:
If d > 0 then πp(z(t)) > w(t) so that T1 is regular.
Else, if d < 0 then πp(z(t)) < w(t) so that T2 is regular.
Finally, if d is zero then let H̃ and H̄ be the planes in R3 that are the chordales, respectively,
of pkµ and plµ, and pkµ and pmµ, for all positive values of µ. Let H be the plane in R3 that
contains q4 and is perpendicular to H̃ ∩ H̄. Compute z̄, the point that is the intersection of
H̃ , H̄, and H , and w̄, the power distance of z̄ from q4.
If πp(z̄) ≥ w̄ then πp(z(t)) ≥ w(t) so that T1 is regular.
Else, if πp(z̄) < w̄ then πp(z(t)) < w(t) so that T2 is regular.
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